MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 $\begin{array}{c} \mbox{Department of Physics}\\ \mbox{Introduction to Special Relativity (8.20)} & - \mbox{IAP 2013} \end{array}$

Welcome to 8.20

Einstein's special theory of relativity is one of the most stunning achievements of physics, comparable only to Newton's *Principia* and the development of quantum theory. You will learn how relativity emerged from a conflict between optics experiments and intuitive notions of space and time. You will retrain your intuition and learn to make relativistic calculations involving Lorentz transformations, length contraction and time dilation, relativistic energy and momentum, and spacetime diagrams. You will use these concepts to unify the seemingly separate phenomena of electricity and magnetism.

This class is intended for freshmen and sophomores. It cannot be used as a restricted elective by physics majors. Credit cannot be received for 8.20 if credit for 8.033 is or has been received in the same or prior terms.

Prerequisites

Newtonian mechanics (8.01) and single-variable calculus (18.01). Prior study of electricity & magnetism (8.02) would be helpful but is not required.

People

Lecturer	Prof. Joshua Winn	$37\text{-}664\mathrm{b},$ jwinn@mit.edu
Graduate Teaching Assistant	Mr. John Barrett	26-650c, barrettj@mit.edu
Course Manager	Ms. Nancy Boyce	4-315, nboyce@mit.edu

Schedule

- Lectures: Weekdays from 9:30-11 am, in 34-101.
- Recitations: Tuesdays and Thursdays, either 2-3 or 3-4 pm, in 4-145.
- Prof. Winn's office hours: Wednesdays and Fridays from 1-3 pm, in 37-664b.
- There will be 5 problem sets, due at intervals of a few days (see the schedule on the next page).
- The midterm exam is on Friday, January 18, and the final exam is on Friday, February 1. Both are from 9:30-11 am in 34-101.

Required textbook

Special Relativity by A. P. French (W. W. Norton, 1968)

Grades

Your grade will be based on the problem sets (35%), midterm (25%), and final exam (40%). Small grade adjustments may be made to reward class participation.

Other Policies

• Announcements, problem sets and solution sets, and other materials will be distributed using the course web site:

```
http://stellar.mit.edu/S/course/8/ia13/8.20
```

- Each lecture has a corresponding reading assignment (see the schedule below). Please read the assigned material before the lecture, or immediately afterward.
- We encourage you to work together on problem sets. You should wrestle with a problem yourself, then discuss it with your friends, and then write up the solution by yourself. You may *not* consult solution sets from previous years.
- Late problem sets will not be accepted.

Schedule

Date	Reading	Topic	
Mon Jan 07	Chap. 1	Departures from Newtonian dynamics	
Tue Jan 08	Chap. 2	Perplexities in the propagation of light	
Wed Jan 09	Chap. 3	Einstein and the Lorentz-Einstein transformations	
Thu Jan 10	Chap. 3	Einstein and the Lorentz-Einstein transformations — pset 1 due	
Fri Jan 11	Chap. 3	Einstein and the Lorentz-Einstein transformations	
Mon Jan 14	Chap. 4	Relativity and the measurement of lengths and time intervals — pset 2 due	
Tue Jan 15	Chap. 4	Relativity and the measurement of lengths and time intervals	
Wed Jan 16	Chap. 5	Relativistic kinematics — pset 3 due	
Thu Jan 17	Chap. 5	Relativistic kinematics	
Fri Jan 18		Midterm exam	
Mon Jan 21		No class (MLK Day)	
Tue Jan 22	Chap. 6	Relativistic dynamics — collisions and conservation laws	
Wed Jan 23	Chap. 6	Relativistic dynamics — collisions and conservation laws	
Thu Jan 24	Chap. 7	More about relativistic dynamics — pset 4 due	
Fri Jan 25	Chap. 7	More about relativistic dynamics	
Mon Jan 28	Chap. 7	Relativity and electricity	
Tue Jan 29	Chap. 8	Relativity and electricity	
Wed Jan 30	Chap. 8	Relativity and electricity — pset 5 due	
Thu Jan 31	Chap. 8	Relativity and electricity	
Fri Feb 01		Final Exam	